Multi-Sensor Based State Prediction for Personal Mobility Vehicles

نویسندگان

  • Jamilah Abdur-Rahim
  • Yoichi Morales
  • Pankaj Gupta
  • Ichiro Umata
  • Atsushi Watanabe
  • Jani Even
  • Takayuki Suyama
  • Shin Ishii
چکیده

This paper presents a study on multi-modal human emotional state detection while riding a powered wheelchair (PMV; Personal Mobility Vehicle) in an indoor labyrinth-like environment. The study reports findings on the habituation of human stress response during self-driving. In addition, the effects of "loss of controllability", change in the role of the driver to a passenger, are investigated via an autonomous driving modality. The multi-modal emotional state detector sensing framework consists of four sensing devices: electroencephalograph (EEG), heart inter-beat interval (IBI), galvanic skin response (GSR) and stressor level lever (in the case of autonomous riding). Physiological emotional state measurement characteristics are organized by time-scale, in terms of capturing slower changes (long-term) and quicker changes from moment-to-moment. Experimental results with fifteen participants regarding subjective emotional state reports and commercial software measurements validated the proposed emotional state detector. Short-term GSR and heart signal characterizations captured moment-to-moment emotional state during autonomous riding (Spearman correlation; ρ = 0.6, p < 0.001). Short-term GSR and EEG characterizations reliably captured moment-to-moment emotional state during self-driving (Classification accuracy; 69.7). Finally, long-term GSR and heart characterizations were confirmed to reliably capture slow changes during autonomous riding and also of emotional state during participant resting state. The purpose of this study and the exploration of various algorithms and sensors in a structured framework is to provide a comprehensive background for multi-modal emotional state prediction experiments and/or applications. Additional discussion regarding the feasibility and utility of the possibilities of these concepts are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Process-Based Decentralized Data Fusion and Active Sensing for Mobility-on-Demand System

Mobility-on-demand (MoD) systems have recently emerged as a promising paradigm of one-way vehicle sharing for sustainable personal urban mobility in densely populated cities. In this paper, we enhance the capability of a MoD system by deploying robotic shared vehicles that can autonomously cruise the streets to be hailed by users. A key challenge to managing the MoD system effectively is that o...

متن کامل

Vehicular Mobility Modeling At large-scale: An Approach to Combine Stationary Sensing and Mobile Sensing

Real-time mobility is important for many real-world applications, e.g., transportation, urban planning, given different level administrative jurisdiction. However, most of the existing work focuses at small scale with limited data samples (e.g. region or city level with samples over all the taxis). Recently, with upgrades of transportation infrastructures, we have new opportunities to capture r...

متن کامل

Investigation and Evaluation of Rolling Resistance Prediction Models for Pneumatic Tires of Agricultural Vehicles

Wheel numeric and different versions of mobility numbers are important models for predicting the rolling resistance. In this study, data related to the rolling resistance of cross ply and radial ply tires were compared with the resultant values from several models. Also, the preciseness of models in rolling resistance prediction was evaluated. For this purpose F test and 1-1 line method (p≥ 0.0...

متن کامل

Gaussian Process Decentralized Data Fusion and Active Sensing for Spatiotemporal Traffic Modeling and Prediction in Mobility-on-Demand Systems

Mobility-on-demand (MoD) systems have recently emerged as a promising paradigm of one-way vehicle sharing for sustainable personal urban mobility in densely populated cities. We assume the capability of a MoD system to be enhanced by deploying robotic shared vehicles that can autonomously cruise the streets to be hailed by users. A key challenge of the MoD system is that of real-time, fine-grai...

متن کامل

Gaussian Process Decentralized Data Fusion and Active Sensing for Spatiotemporal Traffic Modeling and Prediction in Mobility-on-Demand Systems

Mobility-on-demand (MoD) systems have recently emerged as a promising paradigm of one-way vehicle sharing for sustainable personal urban mobility in densely populated cities. We assume the capability of a MoD system to be enhanced by deploying robotic shared vehicles that can autonomously cruise the streets to be hailed by users. A key challenge of the MoD system is that of real-time, fine-grai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016